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Outline for this Part

Definition

Table interpretation encompasses methods that aim to make tabular data
processable by machines.

Three specific subtasks:

1 Column type identification (a.k.a. column-to-concept matching)

2 Entity linking in tables

3 Relation extraction
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Column Type Identification

Definition

Column type identification is concerned with determining the types of
columns, including locating the core column.

(List of Grand Slam men’s singles champions)

http://dbpedia.org/ontology/Person

Person A
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Single-concept vs. Multi-concept Relational Tables

Most existing work assumes the presence of a single core column
(a.k.a. single-concept relational tables)

In some cases, a relational table might have multiple core columns
that may be located at any position in the table, called multi-concept
relational table (Braunschweig et al., 2015)

We focus on single-concept relational tables in this tutorial
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Comparison of Column Type Identification Studies

Reference Knowledge base Method
Venetis et al. (2011) Automatically Majority vote

built IS-A DB
Mulwad et al. (2010) Wikitology Entity search
Fan et al. (2014) Freebase Concept-based + crowdsourcing
Wang et al. (2012) Probase Heading-based search
Lehmberg and Bizer (2016) DBpedia Feature-based classification
Zhang (2017) Wikipedia Unsupervised featured-based
Zhang and Chakrabarti (2013) - Semantic graph method
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Approaches for Column Type Identification

Majority vote (Venetis et al., 2011)

Search-based

Entity search (Mulwad et al., 2010)
Heading search

Feature-based

Unsupervised
Supervised

Crowdsourcing (Fan et al., 2014)
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Venetis et al. (2011)

They argue that the meaning of web tables is “only described in the
text surrounding them. Header rows exist in few cases, and even
when they do, the attribute names are typically useless.”

Key underlying idea: use facts extracted from text on the Web to
interpret tables

An IS-A database is built, consisting of (instance, class) pairs, by
examining specific linguistic patterns on the Web

A column A is labelled with class C if a substantial fraction of the
cells in a column A are labeled with class C in the IS-A database

Using a knowledge base (YAGO) is found to result in higher precision,
while annotating against the IS-A database has better coverage (i.e.,
higher recall)

Shuo Zhang and Krisztian Balog Table Interpretation 7 / 31



Mulwad et al. (2010)

Key idea: obtain possible class labels by utilizing entities in a
knowledge base (here: Wikitology (Syed, 2010))

Each cell’s value in a column is mapped to a ranked list of classes, and
then a single class which best describes the whole column is selected

Retrieve top-k entities from the KB using a complex query, and
consider their classes
Then, a PageRank-based method is used to compute a score for the
entities’ classes, from which the one with the highest score is regarded
as the class label
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Fan et al. (2014)

Issue: Because of the inherent semantic heterogeneity in web tables,
not all tables can be matched to a knowledge base using pure
machine learning methods

Idea: use machine learning for “easy” cases and defer to crowdsouring
for “difficult” ones

A column difficulty estimator component determines the columns that
will be most beneficial for crowdsourcing, based on

Difficulty to determine the concept for the column
The degree of influence of the column, if verified by the crowd, on
inferring the concepts of other columns
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Fan et al. (2014)

Each microtask contains a table column and its candidate concepts

Figure: Crowdsourcing microtask interface in (Fan et al., 2014)
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Take-away Points for Column Type Identification

Most relational tables are single-concept

Methods typically rely on public knowledge bases

Low coverage of knowledge bases is an open issue
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Entity Linking in Tables

Definition

Recognizing and disambiguating specific entities (such as persons,
organizations, locations, etc.), a task commonly referred to as entity
linking, is a key step to uncovering semantics.

http://dbpedia.org/
page/Rafael_Nadal

(List of Grand Slam men’s singles champions)

B
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Overview

Reference Knowledge base Method
Limaye et al. (2010) YAGO catalog, DBpedia,

and Wikipedia tables
Inference of five types of
featuresa

Bhagavatula et al. (2015) YAGO Graphical model
Wu et al. (2016) Chinese Wikipedia, Baidu

Baike, and Hudong Baike
Probabilistic methodb

Efthymiou et al. (2017) DBpedia Vectorial representation and
ontology matching

Zhang (2017) Wikipedia Optimization
Mulwad et al. (2010) Wikitology SVM classifier
Lehmberg et al. (2016) Google Knowledge Graph -
Ibrahim et al. (2016) YAGO Probabilistic graphical

model
Zhang et al. (2013) DBpedia Instance-based schema

mapping
Hassanzadeh et al. (2015) DBpedia, Schema.org,

YAGO, Wikidata, Freebase
Ontology overlapc

Ritze and Bizer (2017) DBpedia Feature-based method
Ritze et al. (2015, 2016) DBpedia Feature-based method
Lehmberg and Bizer (2017) DBpedia Feature-based method
a Designed for table search
b Multiple KBs
c KB comparison
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Approaches for Entity Linking in Tables

Probabilistic graphical models (Bhagavatula et al., 2015)

Feature-based methods (Ritze and Bizer, 2017)

Optimization

Look-up based and ontology matching
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TabEL (Bhagavatula et al., 2015)

Traditional entity linking pipeline

Mention identification
Candidate generation
Disambiguation

Disambiguation technique tailored to
tables

Collective classification technique,
optimizing all entity decisions jointly
(iterative inference over the graphical
model)
Soft constraints encourage
disambiguations of mentions in the same
row and column to be related to one
another

Figure: Graphical model used
for disambiguation. Circles
represent variables and edges
represent their dependencies.
For brevity, non-adjecent
dependencies are only shown for
the cell T [i , j].
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TabEL (Bhagavatula et al., 2015)

Experiments both on Web and Wikipedia tables (based on (Limaye
et al., 2010))

Web tables dataset

9,000 test mentions from 428 tables from the Web
Re-labeled erroneous gold annotations
Reported accuracy is 92.9% (vs. commonness baseline of 88.6%)

Wikipedia tables dataset (WIKI LINKS-RANDOM)

50,000 test mentions from around 3,000 tables randomly drawn from
Wikipedia
Existing links are removed and treated as gold annotations
Reported accuracy is 96.1% (vs. commonness baseline of 87.8%)
(Another variant, TABEL 35K, considers unlinked mentions, while
retaining existing ones)

Resources: http://websail-fe.cs.northwestern.edu/TabEL/
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Web table features for EL (Ritze and Bizer, 2017)

Features found in the table (T) or outside the table (C)

Single table features (TS) refer to a value in a single cell while
multiple features combine values coming from more than one cell
(TM)

Figure: Categorization of web table features in (Ritze and Bizer, 2017)
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Web table features for EL (Ritze and Bizer, 2017)

Feature Description Cat.
Entity label The label of an entity TS
Attribute label The header of an attribute TS
Value The value that can be found in a cell TS
Entity The entity in one row represented as a bag-of-words TM
Set of attr. labels The set of all attribute labels in the table TM
Table The text of the table content without considering any

structure
TM

URL The URL of the web page from which the table has been
extracted

CPA

Page title The title of the web page CPA
Surrounding words The 200 words before and after the table CFT

Table: Web table features in (Ritze and Bizer, 2017)
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KB Features for EL (Ritze and Bizer, 2017)

Feature Description
Instance label The name of the instance mentioned in the rdfs:label
Property label The name of the property mentioned in the rdfs:label
Class label The name of the class mentioned in the rdfs:label
Value The literal or object that can be found in the object

position of triples
Instance count The number of times an instance is linked in the

Wikipedia corpus
Instance abstract The DBpedia abstract describing an instance
Instance classes The DBpedia classes (including the superclasses) to

which an instance belongs to
Set of class instances The set of instances belonging to a class
Set of class abstracts The set of all abstracts of instances belonging to a class

Table: DBpedia features in (Ritze and Bizer, 2017)
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Entity Linking for Web Tables (Ritze and Bizer, 2017)

Taking as many features into account as possible is beneficial

Table features are generally considered more important than context
features (which may add a lot of noise)

These methods tend to perform better for large tables. To overcome
this, Lehmberg and Bizer (2017) stitch tables, i.e., merge tables from
the same website as a single large table, in order to improve the
matching quality.
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Resources for Table Matching by Ritze et al.

WDC Web Tables Corpus
(http://webdatacommons.org/webtables/)

T2D gold standard (Ritze et al., 2015)

Schema-level gold standard: 1,748 tables of which 762 can be matched
with DBpedia classes and 7,983 columns which correspond to DBpedia
properties
Entity-level gold standard: 233 tables, including 26 124 row-to-entity
correspondences to DBpedia resources

T2D v2 gold standard (Ritze and Bizer, 2017)

Includes tables that cannot be matched to the KB (deciding whether a
table can be matched or not is part of the problem)
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Take-away Points for Entity Linking in Tables

Entity linking for tables needs special entity linker instead of using a
textual entity linker

The notion of entity coherence needs to be captured differently
To understand the semantics of a table, it is often necessary to partly
understand the content of the web page that embeds the table

Many of the features are tailored specifically to relational tables; it is
unclear whether they would work well for other types of tables

Shuo Zhang and Krisztian Balog Table Interpretation 22 / 31



Relation Extraction

Definition

Relation extraction refers to the task of associating a pair of columns in a
table with the relation that holds between their contents and/or extracting
relationship information from tabular data and representing them in a
structured format (e.g., as subject-predicate-object triples).

(List of Grand Slam men’s singles champions)

<Peter_Sampras, careerYears, 1990-2002>

C
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Overview of Relation Extraction Studies

Reference KB Method Source of extrac-
tion

Venetis et al. (2011) IS-A DB Frequency-based Core + attribute
columns

Mulwad et al. (2010) DBpedia Utilizing CTI and EL Any pair of columns
Mulwad et al. (2013) DBpedia Semantic passing Any pair of columns
Zhang (2017) Wikipedia Optimization Any pair of columns
Sekhavat et al. (2014) YAGO,

PATTY
Any pair of entities
in the same row

Muñoz et al. (2014) DBpedia Look-up based Any pair of entities
in the same row

Zwicklbauer et al. (2013) DBpedia Frequency-based
Chen and Cafarella (2013) - Classification All columns
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Venetis et al. (2011)

They leverage a relations database of (argument1, predicate,
argument2) triples

Triples are extracted from the Web, using an open information
extraction system, TextRunner (Banko and Etzioni, 2008)

For binary relationships, the relationship between columns A and B is
labeled with R if a substantial number of pairs of values from A and
B occur in the relations database

Annotation quality is evaluated on a table search task (extrinsic
evaluation)

Queries seek a property of a set of instances or entities (e.g., “wheat
production of African countries”)
High precision but low recall (only a small portion of a whole table
corpus was possible to annotate)
They discover that the vast majority of these tables are either not
useful for answering entity-attribute queries, or can be labeled using a
handful of domain-specific methods
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Summary of this Part

Table interpretation is the first step for many table-related tasks
(knowledge base population, QA, etc.)

Existing methods are based on a (strong) assumption that the column
types and relations expressed in a table can be mapped to pre-defined
types and relations in a reference KB. In practice, KBs suffer from
limited coverage

It remains unclear what relations are actuall “useful”

Another open question is whether all three subtasks (column type
identification, entity linking, and relation extraction) can be
performed jointly in a sound way
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