Knowledge Base Augmentation SIGIR 2019 tutorial - Part III

Shuo Zhang and Krisztian Balog

University of Stavanger

Shuo Zhang and Krisztian Balog

★ ∃ ► < ∃ ►</p>

Outline for this Part

- Tables for knowledge exploration
- In Knowledge base augmentation
- Showledge base construction

<日

<</p>

Knowledge Base Augmentation vs Table Interpretation

KBA:

- Table type identification
- 2 Entity linking
- Schema matching
- Slot filling

Table Interpretation:

Column type identification

(日)

- 2 Entity linking
- 8 Relation extraction

Definition

The knowledge contained in web tables can be harnessed for knowledge exploration, which explores the knowledge such as relationships.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Knowledge bases tend to be geared towards understanding single entities
- Web tables contain groups of related entities and require less assembly to produce downwards or sideways from them
- Chirigati et al. (2016) propose a method for using web tables for generating *knowledge carousels*

Knowledge Carousels (Chirigati et al., 2016)

Knowledge Carousels (Chirigati et al., 2016) is the first system addressing this, by providing support for exploring "is-A" and "has-A" relationships.

Explore more about Kentucky Derby			Explore more about Kentucky Derby	
Winners of Kentucky Derby			More Triple Crown Horse Race	s in the USA
American Pharoah Year: 2015 Time: 2:03.02 Jockey: Victor Espinoza	California Chrome Year: 2014 Time: 2:03.66 Jockey: Victor Espinoza	Orb Year: 2013 Time: 2:02.89 Jockey: Joel Rosa	Preakness Stakes Location: Baltimore, Maryland Distance: 1,900m Date: 3rd Saturday in May	Belmont Stakes Location: Elmont, New York Distance: 2,400m Date: 3rd Saturday after Preakness

Figure: Illustration of Knowledge Carousels, showing an example of knowledge exploration for the query of "kentucky derby" through Knowledge Carousels: (a) a downward showing the winners of Kentucky Derby; (b) a sideway representing the famous Triple Crown horse races in the US, of which Kentucky Derby is a member.

- ロ ト ・ 同 ト ・ 三 ト ・ 三 ト - -

Take-away Points for Tables for Knowledge Exploration

- It is important to know what knowledge is contained in tables
- Tables are highly structured and related entities are easy to find, e.g., member entities
- Tables are often curated with explicit contextual information and they are important to understand the concepts of entities
- Table structure allows for inferring implicit features by reasoning across columns

Outline for this Part

- Tables for knowledge exploration
- **2** Knowledge base augmentation
- Showledge base construction

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

Knowledge base augmentation, also known as knowledge base population, is concerned with generating new instances of relations using tabular data and updating knowledge bases with the extracted information.

Source	Tables	KB	Tasks
Sekhavat et al. (2014)	Spreadsheet	YAGO	Slot filling
Cannaviccio et al. (2018)	Wikipedia	DBpedia	Slot filling
T2K (Ritze et al., 2015)	Web	DBpedia	Entity linking
			Schema Matching
Ritze et al. (2016)	Web	DBpedia	Slot filling
Hassanzadeh et al. (2015)	Web	DBpedia,Schema.org	Entity linking
		YAGO, Wikidata,	Schema matching
		and Freebase	

э

Ronaldinho	Brazil	Barcelona FC
Fabio Cannavaro	Italy	Juventus
Kaka	Brazil	AC Milan
Lionel Messi	Argentina	Barcelona FC

It focuses on identifying plausible relations between pair of entities that appear in the same row of a table.

3

ヘロト ヘロト ヘビト ヘビト

- To match under-explored tabular data to a Linked Data repository, Sekhavat et al. (2014) propose a probabilistic method by collecting sentences containing pairs of entities in the same row in a table
- Extracting the patterns with the help of PATTY patterns and NELLTriples
- Setimate the probability of possible relations that can be added to the Linked Data repository

Evaluation on spreadsheets

- Sekhavat et al. (2014) looked at 48 <singer, song> pairs from Frank Sinatra, manually verified 48 facts and found only 31 were already in YAGO
- In the experiment on 100 NBA <player, team> pairs, YAGO had 92 of them in the *is-affiliated-to* relation

Cannaviccio et al. (2018)

Cannaviccio et al. (2018) leverage the patterns that occur in the schemas of a large corpus of **Wikipedia tables**.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Use the facts already in DBpedia to associate a bi-column with a relation
- Associate schemas to relations
- Associate relations to Bi-columns

A B A A B A

Take-away Points from (Cannaviccio et al., 2018)

- Headings are useful, especially for Wikipedia tables
- Find 1.7M facts
- Sesources: http://dx.doi.org/10.7939/DVN/F36TGC

・ 同 ト ・ ヨ ト ・ ヨ ト

Matching problems include:

- Table-to-class matching (Table type identificatioin)
- Attribute-to-property matching (Schema matching)
- 8 Row-to-instance matching (Entity linking)

Ritze et al. (2015) propose an iterative matching method, T2K, to match web tables to DBpedia for augmenting knowledge bases.

イロト 不得 ト イヨト イヨト

Matching steps of T2K

э

Candidate Selection of T2K

Candidate Selection:

- Search for the entity label in DBpedia, and Top-k candidates are kept
- Determine the distribution of each entity and choose the most frequent class as candidates for schema matching
- Candidates not belonging to a chose class are removed

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Value-based Matching of T2K

- Candidate Selection
- Value-based Matching:
 - The values of each entity are compared to the values of the candidates
 - Only values with the same type are compared
 - Calculate all combination similarities and choose the maximum if multi-values exist

・ 何 ト ・ ヨ ト ・ ヨ ト

Property-based Matching of T2K

- Candidate Selection
- 2 Value-based Matching
- Property-based Matching:
 - Aggregate the value similarities per attribute for schema matching
 - Votes from all values are summed up and the attribute property pair with the highest value is chosen (a similar attribute property pair has many similar values)
 - Heading labels are not considered

< □ > < □ > < □ > < □ > < □ > < □ >

Iterative Matching of T2K

- Candidate Selection
- Value-based Matching
- Property-based Matching
- Iterative Matching: Value-based Matching and Property-based Matching are refining each other until the similarities do not change

・ロト ・ 同ト ・ ヨト ・ ヨト

Task	Precision	Recall	F1	F1 (opt.)
Entities	0.90	0.76	0.82	0.86
Properties	0.77	0.65	0.70	0.73
Classes	0.94	0.94	0.94	0.97

- Low recall of entities. Solution: soft constrain...
- Low recall of properties. Solution: include heading...
- T2K works well for large tables
- Feature study (Ritze and Bizer, 2017) (Part-2)
- This work focuses on table to DBpedia matching
- T2D golden collection is made public available

Ritze et al. (2016)

Facts about Web tables and DBpedia when matching:

- Entity: 949970 of 33.3M (English relational) tables have row-to-entity correspondence. A total of 361 different classes from DBpedia ontology
- Schema: 301450 tables match 274 different DBpedia classes
- **③** Table type: Almost 50% describe Persons and Organizations

DBpedia Class	Instances
+ Person	1445104
I- Athlete	280976
+ Organisation	241286
- EducationalInstitution	35190
Place	725546
- Country	1694
Work	396046
+ MusicalWork	162397
+ Software	25649
Species	283341

< ロ > < 同 > < 三 > < 三 > < 三 > <

Facts about Web tables and DBpedia when matching:

- Data type: String > Numerical > Date
- Only 2.85% of all Web tables can be matched to DBpedia
 - Cover 15.6% DBpedia entities and 3% of the entities are described in more than 100 tables
 - Cover 721 unique properties
 - Coverage can be enhanced in many manners

- 4 回 ト 4 三 ト 4 三 ト

Shortcomings of the method:

- Temporal facts: objects are changing over time
- Oliferent granularity and conflicting values: the city of the Emroy university is Druid Hills Georgia in DBpedia. In tables, it is Atlanta. Druid Hills Georgia is a community in Atlanta
- Solution Missing objects in lists: novel entities and concept population

Data fusion aims to select the triples of a group with the same subject/predicate and used as slot filling. Strategies of data fusion for generating new facts:

- Majority/Median Fusion: voting for strings, and median for numeric and date
- **2** Knowledge-based Trust: assign a trust score by calculating the overlap
- **③** PageRank-based Trust: PageRank scores for assessing the tables

Strategy	F_o	F_{no}	Precision	Recall	$\mathbf{F1}$
MM	691622	237548	.369	.823	.509
\mathbf{KBT}	378892	64237	.639	.785	.705
\mathbf{PR}	691622	237548	.365	.814	.504

- ロ ト ・ 同 ト ・ 三 ト ・ 三 ト - -

Causes of incorrect fusion results:

- **O** Conversion issues: e.g., date format (6/9/1987 VS 9/6/1987)
- Ambiguous entities: e.g., common names
- Seriormance varies with Classes and Properties

・ 同 ト ・ ヨ ト ・ ヨ ト

Match Tables to Multiple KBs

Figure: Most frequent column headings. (Illustration from (Hassanzadeh et al., 2015)) Shuo Zhang and Krisztian Balog

Take-away Points of Knowledge Base Augmentation

- Table matching is a key step towards knowledge base augmentation
- Only a small portion of tables can be matched to the knowledge bases
- The unmatched tabular data remains under exploration

- Tables for knowledge exploration
- In Knowledge base augmentation
- **Interset Service** Service **Service Service Service**

э

Definition

Instead of augmenting existing knowledge bases, web tables contain abundant information to be turned into knowledge bases themselves.

TableNet (Fetahu et al., 2019)

- TableNet is an approach to construct a knowledge graph of interlinked tables with *has-a* and *is-a* relations
- It has two main steps:
 - **(**) Given a input table, it finds all candidate tables with high coverage
 - A neural approach that takes the columns and decides the type of relations

Candidate Selection in TableNet (Fetahu et al., 2019)

Features for candidate finding (predict if a pair of tables are related).

Feature	Description
TFIDF	TFIDF similarity between abstracts
d2v	Doc2vec similarity between abstracts
w2c	Avg. word2vec abstract vectors similarity
c2v	Category embeddings similarity
category overlap	Direct and parent categories overlap
article sim	Embedding similarity of the article pair
type overlap	Type overlap
column sim	Column title and distance between table headings
	category representation sim

(日)

Candidate Selection in TableNet (Fetahu et al., 2019)

- Features in the previous slide are used to remove irrelevant article pairs
- In terms of recall, in most of the cases the individual features have over 0.8 coverage
- *Doc2vec* provides a high reduction of 0.91

Classification in TableNet (Fetahu et al., 2019)

- Fetahu et al. (2019) represent tables by joining column description, instance-values and column-type
- Classification is based on an RNN with LSTM cells

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

- LSTM and BiLSTM are able to capture the sequence information in the table schemas
- TableNet can provide the means to capture the contextual similarity between the column description, type and instance cell-values
- TableNet+type outperforms on all classes in terms of F1
- Resources: https://github.com/bfetahu/wiki_tables
- Need to match to the knowledge bases before complementing the existing KBs

<日

<</p>

- **1** Knowledge exploration is important for knowledge base augmentation
- Ø More efficient methods are needed for table-to-KB match
- The unmatched tabular data deserves exploration
- KBs can be constructed based on tables

Bibliography I

- Matteo Cannaviccio, Lorenzo Ariemma, Denilson Barbosa, and Paolo Merialdo. Leveraging wikipedia table schemas for knowledge graph augmentation. In *Proc. of WebDB'18*, pages 1–6, 2018.
- Fernando Chirigati, Jialu Liu, Flip Korn, You (Will) Wu, Cong Yu, and Hao Zhang. Knowledge exploration using tables on the web. *Proc. VLDB Endow.*, 10(3):193–204, November 2016. ISSN 2150-8097.
- Besnik Fetahu, Avishek Anand, and Maria Koutraki. Tablenet: An approach for determining fine-grained relations for wikipedia tables. In *Proc. of WWW '19*, pages 2736–2742, 2019.
- Oktie Hassanzadeh, Michael J. Ward, Mariano Rodriguez-Muro, and Kavitha Srinivas. Understanding a large corpus of web tables through matching with knowledge bases: an empirical study. volume 1545 of *CEUR Workshop Proceedings*, pages 25–34. CEUR-WS.org, 2015.
- Dominique Ritze and Christian Bizer. Matching web tables to dbpedia A feature utility study. In Proceedings of the 20th International Conference on Extending Database Technology, EDBT 2017, Venice, Italy, March 21-24, 2017., pages 210–221, 2017.
- Dominique Ritze, Oliver Lehmberg, and Christian Bizer. Matching html tables to dbpedia. In *Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics*, WIMS '15, pages 10:1–10:6, New York, NY, USA, 2015. ACM.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- Dominique Ritze, Oliver Lehmberg, Yaser Oulabi, and Christian Bizer. Profiling the potential of web tables for augmenting cross-domain knowledge bases. In *Proceedings of the 25th International Conference on World Wide Web*, WWW '16, pages 251–261, Republic and Canton of Geneva, Switzerland, 2016. International World Wide Web Conferences Steering Committee.
- Yoones A. Sekhavat, Francesco Di Paolo, Denilson Barbosa, and Paolo Merialdo. Knowledge base augmentation using tabular data. In *Prof. of WWW '14*, 2014.